Strategic Trade Control Enforcement (STCE) Implementation Guide
Outline

What is STCE?

International Legal Frameworks

Chemical, Biological, and Radioactive Materials

Dual-Use Materials, Dual-Use Equipments

Weapons and Military Equipments
Definition of Strategic Goods

WCO Definition of Strategic Goods

- Strategic goods are weapons of mass destruction (WMD), conventional weapons, and related items involved in the development, production, or use of such weapons and their delivery systems.

- WMD
- Conventional weapons
- Related Items

Strategic goods pose a security threat or confer a major military advantage to an adversary.
1. WMD are weapons that can inflict mass casualties or cause great physical damage.

2. WMD include
 - Nuclear weapons
 - Chemical weapons
 - Biological weapons
 - Radiological weapons
2. Non-WMD weapons of war such as bombs, shells, rockets, etc.

The WCO does not include small arms and light weapons (SALW) within the scope of strategic goods.
3. Strategic goods also include materials and equipment involved in the development, production, or use of WMD, conventional weapons, and delivery systems.

- Many of these items are “dual-use” – they also have legitimate commercial uses. Often they are commonly traded, but subject to a permitting process.

Typically, national trade control laws and regulations will specify items requiring control through licensing or permitting.
Examples of “Related Items”

- Chemicals
- Explosives
- Metals
- Radioactive and nuclear materials
- Industrial machinery and equipment
- Electronics and electrical equipment
- Measuring and test equipment
- Weapons and military equipment

Annex III of the STCE Implementation Guide describes many strategic items in the context of the Harmonized System (HS)
Protection of society is a vital goal of Customs.

The United Nations Security Council (through Resolution 1540) has recognized proliferation of WMD and related materials as a threat to international peace and security.

UNSCR 1540 imposes binding obligations on all States to take and enforce effective measures to regulate trade.

Customs ensures that international trade complies with laws and regulations.
Resolution 1540 imposes binding obligations on all states to take and enforce “effective measures” to prevent proliferation of nuclear, chemical, or biological weapons and their means of delivery, including, inter alia,
- Export, transit, trans-shipment, and border controls
- Law enforcement to block illicit trafficking of related materials

Requires states to act beyond an expression of commitment
- Legislation, implementation, and enforcement
• Regarding “materials, equipment, and technology covered by the relevant multilateral treaties and arrangement...”
 – Paragraph 3.c
 • Establish effective border controls and law enforcement efforts to detect, deter, prevent and combat ... the illicit trafficking and brokering in such items...
 – Paragraph 3.d
 • Establish, develop, review and maintain appropriate effective national export and trans-shipment controls over such items...
In December 2015, the WCO’s Policy Commission, its highest body, issued a very significant resolution with respect to the security role of Customs.

'I welcome this Resolution on behalf of the global Customs community and pledge to continue to advocate for increased cooperation at the national and international level between Customs and other border and law enforcement agencies to ensure that Customs Administrations worldwide may function at an optimum level, leveraging all the resources at their disposal, in the fight against terrorism.'

Mr. Kunio Mikuriya
WCO General Secretary
Evolution of Customs Role

- Revenue Collection
- Industrial Assistance
- Community Protection
- Trade Facilitation

How about your Customs Administration?
<table>
<thead>
<tr>
<th>Treaties</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPT: Treaty on the Non-Proliferation of Nuclear Weapons</td>
</tr>
<tr>
<td>Commits parties not to provide certain nuclear materials or goods for the processing, use, or production of those materials</td>
</tr>
<tr>
<td>CWC: Chemical Weapons Convention</td>
</tr>
<tr>
<td>Contains specific provisions covering import and export of certain “Scheduled” chemicals</td>
</tr>
<tr>
<td>Requires annual declarations of regarding transfers</td>
</tr>
<tr>
<td>BWC: Biological Weapons Convention</td>
</tr>
<tr>
<td>Requires States Parties to refrain from transferring biological weapons and from assisting, encouraging, or inducing anyone to manufacture them</td>
</tr>
<tr>
<td>HCOC: Hague Code of Conduct against Ballistic Missile Proliferation</td>
</tr>
<tr>
<td>Calls for restraint in production, testing, and export of ballistic missiles</td>
</tr>
<tr>
<td>ATT: Arms Trade Treaty</td>
</tr>
<tr>
<td>Includes legally binding commitments to establish and maintain national control systems to regulate international trade in conventional weapons, ammunition, and related parts and components.</td>
</tr>
</tbody>
</table>
NSG
Nuclear Suppliers Group
- nuclear and nuclear-related dual-use exports

AG
Australia Group
- chemical and biological export guidelines and control lists
- assists adherents in fulfilling their CWC and BWC obligations

MTCR
Missile Technology Control Regime
- unmanned delivery systems capable of delivering WMD

WA
Wassenaar Arrangement
- conventional arms and related dual-use goods and technologies

- Together, the guidelines and control lists of the multilateral export control arrangements constitute the set of international norms and the basis for coordinated national export control efforts.
Chemicals
Three main steps:
1. Recognizing a chemical shipment.
2. Chemical identification.
3. Determining if the chemical might be strategic.
Two key recommendations from the United Nations:

- Globally Harmonized System of Classification and Labeling of Chemicals (GHS) for individual chemical packaging (*chemical bottles and drums*)
- UN Recommendations on the Transport of Dangerous Goods (Model Regulations) for outer packaging (*box full of bottles*) and cargo transport units (*tank trucks and ISO containers*)

GHS and Model Regulations have **safe transport** of chemicals as a common goal and promote harmonized communication of hazards.
Marking, Labeling and Placarding

- Packages: Proper shipping name and UN number, with diamond-shaped danger label(s)
- Cargo transport units*: Diamond-shaped placard(s) on exterior surface with UN number displayed
 - Inside placard in white box
 - Adjacent to placard in an orange rectangular panel

*Road transport tanks or freight vehicles, railway transport tanks or freight wagons, multimodal freight containers or portable tanks, or multiple element gas containers (MEGCs)
Examples of Proper Labeling, Marking, and Placarding
Improper Labeling and Packaging

- Missing or incomplete labels
- Destroyed label
- Proper label, unsafe packaging
Documents Associated with Chemical Shipments

- Dangerous goods transport documents
- Safety Data Sheets (SDS)
- Product Specification

- UN number
- Shipping name + technical name
- Hazard information from Dangerous Goods List
• Labels, marking, documentation: information + reduce contact with chemicals

• Technical reach-back
CAS Registry Numbers (CAS #s, CAS RNs)

CAS = Chemical Abstracts Service
Unique international numeric identifiers

xxxxxxx-yy-z

- Up to 7 digits
- 2 digits
- Check digit
Annex V - Strategic Chemicals by CAS Registration Number

The list includes a great number of chemicals listed by the CWC, AG, NSG, MTCR, WA, and PGS. The most commonly traded CWC scheduled chemicals, as identified by the OPCW81, are shown in bold red text.

CAS numbers cannot be used as unique identifiers in all situations because some forms of listed chemicals have different CAS numbers, and mixtures containing a listed chemical may also have different CAS numbers.

<table>
<thead>
<tr>
<th>CAS</th>
<th>Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>430-78-4</td>
<td>Ethylene phosphine difluoride</td>
</tr>
<tr>
<td>464-07-3</td>
<td>Phenyl acetate</td>
</tr>
<tr>
<td>701-46-4</td>
<td>Tetrachloroethylene</td>
</tr>
<tr>
<td>805-61-3</td>
<td>Bis(2-chloroethyl) sulfide</td>
</tr>
<tr>
<td>805-71-5</td>
<td>EDNIA (Ethylendinitrile)</td>
</tr>
<tr>
<td>926-59-2</td>
<td>Dimethylenetriamine hydrochloride</td>
</tr>
<tr>
<td>506-77-4</td>
<td>Cyanogen chloride</td>
</tr>
<tr>
<td>505-93-4</td>
<td>Sulfoxazine</td>
</tr>
<tr>
<td>532-27-4</td>
<td>2-Chloro-1,1-dichloroethane</td>
</tr>
<tr>
<td>536-07-8</td>
<td>NNH</td>
</tr>
<tr>
<td>540-73-8</td>
<td>Symmetrical dimethyl hydrazine</td>
</tr>
<tr>
<td>541-25-3</td>
<td>2-Chlorovinylchloroanil</td>
</tr>
<tr>
<td>555-77-1</td>
<td>NN3</td>
</tr>
<tr>
<td>566-88-7</td>
<td>Nitroguanidine</td>
</tr>
<tr>
<td>756-94-9</td>
<td>10-Chloro-5,10-dihydrophenazine</td>
</tr>
<tr>
<td>963-33-8</td>
<td>TPS</td>
</tr>
<tr>
<td>971-12-7</td>
<td>Octyl</td>
</tr>
<tr>
<td>637-39-8</td>
<td>Tetraethanolamine hydrochloride</td>
</tr>
<tr>
<td>763-63-5</td>
<td>Methylenephosphide dichloride</td>
</tr>
<tr>
<td>766-97-1</td>
<td>Methylphosphonyl dichloride</td>
</tr>
<tr>
<td>766-99-2</td>
<td>Methylphosphonic dichloride</td>
</tr>
<tr>
<td>676-99-3</td>
<td>DF</td>
</tr>
<tr>
<td>677-43-0</td>
<td>N,N-Dimethylaminophosphonic dichloride</td>
</tr>
<tr>
<td>683-08-9</td>
<td>Diethyl methylphosphonate</td>
</tr>
<tr>
<td>685-21-0</td>
<td>Diethylene glycol difluoride</td>
</tr>
<tr>
<td>753-59-3</td>
<td>Methylphosphonic dichloride</td>
</tr>
<tr>
<td>763-98-0</td>
<td>Ethylphosphonic dichloride</td>
</tr>
<tr>
<td>766-79-6</td>
<td>Dimethyl methylphosphonate</td>
</tr>
<tr>
<td>762-04-9</td>
<td>Diethyl phosphite</td>
</tr>
<tr>
<td>764-23-8</td>
<td>O,O-Diethylphosphoryl O-(4-nitro-3- trifluoromethylpheny) methylenephosphonate</td>
</tr>
<tr>
<td>865-85-9</td>
<td>Dimethyl phosphate</td>
</tr>
<tr>
<td>869-24-9</td>
<td>N,N-Diethy laminoethanol-2-chloride hydrochloride</td>
</tr>
<tr>
<td>932-64-9</td>
<td>NTO</td>
</tr>
<tr>
<td>933-13-5</td>
<td>Methylphosphonic acid</td>
</tr>
<tr>
<td>963-43-1</td>
<td>Ethylphosphonic dichloride</td>
</tr>
<tr>
<td>1006-50-8</td>
<td>Ethylphosphonic dichloride</td>
</tr>
<tr>
<td>1217-55-2</td>
<td>Ferrocene carboxylic acid</td>
</tr>
<tr>
<td>1273-98-9</td>
<td>Ethyl ferrocene</td>
</tr>
<tr>
<td>1273-98-9</td>
<td>Ethyl ferrocene</td>
</tr>
<tr>
<td>1273-98-9</td>
<td>Ethyl ferrocene</td>
</tr>
<tr>
<td>1274-08-4</td>
<td>Dibutyl ferrocene</td>
</tr>
<tr>
<td>1274-08-4</td>
<td>Dibutyl ferrocene</td>
</tr>
<tr>
<td>1274-08-4</td>
<td>Dibutyl ferrocene</td>
</tr>
<tr>
<td>1304-56-9</td>
<td>Beryllium oxide</td>
</tr>
<tr>
<td>1313-82-2</td>
<td>Sodium sulfide</td>
</tr>
<tr>
<td>1314-23-3</td>
<td>Thionyl oxide</td>
</tr>
<tr>
<td>1314-40-3</td>
<td>Phosphorus pentasulfide</td>
</tr>
<tr>
<td>1317-90-6</td>
<td>Superfine iron oxide (Fe2O3)</td>
</tr>
<tr>
<td>1333-93-1</td>
<td>Sodium bifluoride</td>
</tr>
<tr>
<td>1341-46-7</td>
<td>Ammonium bifluoride</td>
</tr>
<tr>
<td>1344-57-6</td>
<td>Uranium dioxide</td>
</tr>
<tr>
<td>1344-58-7</td>
<td>Uranium oxide</td>
</tr>
<tr>
<td>1344-59-8</td>
<td>Uranium oxide</td>
</tr>
<tr>
<td>1445-70-7</td>
<td>Chlorosilane</td>
</tr>
<tr>
<td>1614-08-0</td>
<td>ADHTON</td>
</tr>
<tr>
<td>1619-34-7</td>
<td>3-Quinuclidinol</td>
</tr>
<tr>
<td>1630-08-6</td>
<td>DATB</td>
</tr>
</tbody>
</table>

81 https://www.opcw.org/resources/declarations/most-traded-scheduled-chemicals-2017
Biological Materials
Pathogenic micro-organisms (Infectious agents) and toxins that can be used as biological weapons (BW) in biological warfare.

- Viruses, bacteria, fungi and toxins
- Sources: naturally-occurring, academic, commercial
- Applications: vaccines, treatments, diagnostics, etc.

BW concern: attacks against people, livestock, crops
Category A Infectious Substances

- Permanent disability, life-threatening or fatal disease
- **UN 2814** or **UN 2900** (+ **UN 1845** dry ice)
 (+ **UN 1977** liquid nitrogen)
- < 50 ml or 50 g for passenger aircraft
- < 4 L or 4 kg for cargo aircraft

Proper packaging to minimize risk of exposure
Marking and Labeling Category A Shipments

Indonesian Customs

Strategic Trade Control Enforcement
Use of refrigerants: additional requirements
Category A Inner Packaging

- Space for dry ice
- Cushioning & biohazard symbol
- Secondary packaging with label
1. Shipper’s Declaration for Dangerous Goods (air shipments)
2. Air waybill (air shipments)
3. Packing list/pro-forma invoice
4. List of contents between secondary packaging and outer packaging
Category B Infectious Substances

- “an infectious substance which does not meet the criteria for inclusion in Category A”
- **UN 3373** (+ **UN 1845** if packed in dry ice)
 (+ **UN 1977** if packed in liquid nitrogen)
- **Air transport:**
 - No primary receptacle > 1 L
 - Outer packaging cannot contain > 4 L of liquid or > 4 kg of solid

Less stringent requirements, packages still must be robust
Marking and Labeling Category B Shipments

Shipper:
Clark Kent
Life Technologies
19 Spalding Road
Ottawa ON K1A 0A9
1-613-992-4793
24 Hour #: CANUTEC
1-613-996-6666

Consignee:
Farell Johnson
University of BC
52 Campus Drive
Vancouver BC V6T 2M4

UN3373
BIOLOGICAL SUBSTANCE
CATEGORY B

UN1845
DRY ICE
5 KG NET WT.
Category B Packaging

- Leakproof inner primary receptacles
- Absorbent material
- Leakproof secondary packaging
- Rigid outer packaging with cushioning material (e.g. styrofoam inserts)

Technical name **NOT REQUIRED** on outer packaging
Category B Documentation

- Dangerous goods transport document: **not required**
- Should have
 - Air waybill (air shipments)
 - Packing list/pro-forma invoice, number of packages, contents, weight, value

Scientific name **NOT REQUIRED** on waybill – see the invoice.
Radioactive Materials
Radioactive materials (RM) emit radiation.

1. Naturally Occurring Radioactive Material (NORM)
2. Declared shipments of medical or industrial isotopes or nuclear materials
3. Contaminated materials
4. Smuggled materials
NORM - Naturally occurring RM

- Not declared as radioactive materials
- Not a threat, but can present a hazard
Declared Shipments of R/N Materials

- ≈ 20 M packages annually.

- International standards for
 - placarding
 - packaging
 - labeling
 - documentation

- IAEA Safety Standards
- ADR
Declared shipments placarding

- Hazard Class 7

- 4-digit UN Numbers
• Labels on 2 opposite sides
 - 4 sides for freight containers and tanks

• Identify contents, total activity (TBq, MBq, or Bq)

• Transport Index: level of radiation emitted by package
• Other package markings
 – Proper shipping names, e.g.
 • Radioactive Material, Type A Package
 • Radioactive Material, Type B Package
 – UN numbers identify contents, e.g.
 • “UN2915”
 • “UN2916”
• Required packaging depends on radiological risk level of material
Shipping Documents

Packing list, Dangerous Goods Shipping Document, Customs Declaration, licenses

Ensure consistency!

• Radionuclides in package
• Total activity of radioactive content
• Proper shipping name
• UN Number
• Category of the package
Smuggled Materials

Radioactive materials may be concealed by shielding or masking

- Shields include dense materials (such as lead, tungsten, steel, iron, concrete) and materials that contain hydrogen (such as water, plastic, wax)

- Masks include large amounts of NORM (such as ceramics, tile, fertilizer) or other radioactive materials
Smuggled Materials

- Of greatest significance:
 - Special nuclear materials
 - Can be used in nuclear weapons
 - Uranium 233 or 235
 - Plutonium
- Not intensely radioactive
 - Can be difficult to detect, especially when shielded
- Every gram of special nuclear material should be under strict control.
Dual-Use Materials
What are Dual-Use Materials?

• Civilian purposes – BUT: WMD, conventional weapons, delivery systems
• Commonly traded, but licensable
• Metals, alloys, or non-metals.

Subject to controls if they meet technical specifications.
Significant military advantage with:

- High strength and light weight
- Corrosion resistance
- Exotic properties
Examples of Dual Use Materials

- Aluminium alloys
- Aramid fiber
- Beryllium
- Bismuth
- Boron
- Boron carbide
- Calcium
- Carbon fiber
- Glass fiber
- Graphite
- Hafnium
- Magnesium
- Maraging steels
- Nickel alloys
- Nickel powder
- Niobium alloys
- Rhenium
- Titanium alloys
- Titanium-stabilized duplex stainless steel (Ti-DSS)
- Tungsten
- Tungsten carbide
- Zirconium

Many of these are profiled in the WCO STCE Guide.
How to identify DU materials

1. Physical appearance
 (not reliable)
2. Packaging and documentation
3. Technical analysis

Labels, markings, documents!
Forms of materials

Controlled:
• raw, unwrought, semi-fabricated
• manufactured articles

<table>
<thead>
<tr>
<th>81.09</th>
<th>Zirconium and articles thereof, including waste and scrap.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8109.20</td>
<td>- Unwrought zirconium; powders</td>
</tr>
<tr>
<td>8109.30</td>
<td>- Waste and scrap</td>
</tr>
<tr>
<td>8109.90</td>
<td>- Other</td>
</tr>
</tbody>
</table>

Metal powders: shipped like chemicals
Shipments of Unwrought and Semi-Fabricated Forms

- For further processing
- Stamps: alloy information
- Certificates: composition
- Packaging: not very protective

CERTIFICATE OF ANALYSIS
13X 14933 (batch R)

Certified Reference Material Information
- Type: MARAGING STEEL (CAST)
- Form and Size: Disc 40mm Diameter x 15mm Thickness
- Supplied by: MBH Analytical Limited
- Produced by: Willan Metals Limited

Certified Analysis

<table>
<thead>
<tr>
<th>Element</th>
<th>C</th>
<th>Si</th>
<th>S</th>
<th>P</th>
<th>Mn</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>0.008</td>
<td>0.05</td>
<td>0.014</td>
<td>0.023</td>
<td>0.17</td>
<td>16.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Cr</th>
<th>Mo</th>
<th>Co</th>
<th>Al</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>0.022</td>
<td>3.83</td>
<td>11.4</td>
<td>0.005</td>
<td>0.029</td>
</tr>
</tbody>
</table>
Manufactured forms, shipped like industrial equipment

- Cardboard boxes
- Pallets, crates
- Protection
- Labels + documents

Protective packaging and labels
Graphite

- HS 3801.10
- A form of carbon
- Aluminum and steel production (HS 8545)
- Nuclear and missile uses
- High density, high purity, fine grain size
Aramid fiber

- HS 55.01/ 55.02
 - Not specific to aramids
- High strength and heat resistance
- Armor & ballistic protection, advanced composites
- Yellow

Kevlar, Nomex, Twaron
• HS 68.15
• Black
• High strength, heat resistant, low weight
• Uses
 – automotive, sporting goods
 – Uranium enrichment, missiles

Most carbon fiber on the market is strategic
Maraging Steels

- M300, M350, M400
- Trade names: Vascomax®, NiMark®
- High strength
- Aerospace, nuclear, military

Most maraging steel is controlled.
Nickel Powder

- HS 7504.00
- CAS 7440-02-0
- Purity and particle size
- **Strategic: uranium enrichment**
Aluminum Alloys

- HS 7601.20, 7604.21, 7608.20
- Strength and form
- Strategic: uranium enrichment

Tubes > 75 mm in diameter.
Tungsten

- HS 81.01
- CAS 1207-12-1
- Purity, form, particle size
- *Strategic: missile and nuclear weapon components.*

Extremely heavy
Dual-Use Equipment
What is Dual-Use Equipment?

- Legit commercial uses, with WMD implications
- Commonly traded, but subject to licensing
- Includes
 - Industrial machinery and equipment (HS Chapter 84)
 - Electronics (HS Chapter 85)
 - Measuring and test equipment (HS Chapter 90)

Extremely wide array of strategic goods!
- Corrosion-resistant materials of construction, including linings
- Special markings
- Unusually high value
- Commodity-specific features
• HS codes of greatest interest: 8413.50, 8413.60, 8413.70
• None are specific for strategic pumps
• Missile propulsion, nuclear reactors, chemical processing for CW

Pumps are easy to identify, but technical reachback will be needed to determine if they are strategic.
Nameplate should provide useful data for technical reachback
Chemical Reaction Vessels

- HS 8419.89
- Makes chemical compounds from precursors
- Cylindrical vessels with ports, flanges, agitator mount
- Strategic: volume + corrosion-resistant materials

Nameplates helpful for identifying vessels and their specifications
Valves

- 84.81
- To control and regulate flow of fluids – ubiquitous
- Strategic: chemical, nuclear, missile concerns

Stamps and markings for identification
Capacitors

- HS 85.32
- To store and release electric charge.
- Majority of capacitors are not strategic.
- Strategic: special pulse discharge capacitors, high-energy storage capacitors.

Voltage < 750 V: probably not strategic.
Developing fingerprints requires understanding the strategic commodities.
Weapons and Military Equipment
Strategic Military Weapons and Equipment

- Armoured vehicles such as tanks, armored fighting vehicles, armored personnel carriers, etc.
- Combat aircraft, helicopters, drones/UAVs, etc.
- Warships
- Large-caliber artillery systems
- Grenade launchers and other heavy weapons
- Ammunition/munitions for any of the above
- Communication systems, radars, missile guidance systems, etc.
- Equipment specially designed for military applications
- Parts specially designed for any of the above.

The Wassenaar Arrangement (www.wassenaar.org) provides extensive lists of munitions and related dual-use equipment.
• Unmanned Aerial Vehicles (UAV) are becoming increasingly common for both military and commercial uses
 - Both commercial and military systems can be strategic commodities!
 - They resemble manned aircraft but are generally smaller and without cockpits.
• UAVs with spraying and fogging systems could be used to disseminate chemical or biological weapons, but even these are commonly used for agricultural spraying.
• UAVs capable of carrying 500 kg payloads would also be extremely strategic.
UAVs are often dismantled for shipment.
• Many clues can indicate that equipment may be military in nature, including:
 – Color schemes
 – Ruggedized construction
 – Reference to Military Standards (MIL-STD/MIL-SPEC)
 – Military markings, stock numbers, and other designation systems
Color schemes

- Military equipment often distinctive military color schemes
 - Drab tones of olive, green, grey, sand, or earth
 - Camouflage patterns
• Military equipment is often constructed to meet high specifications (MIL-SPEC) for resistance to shock, vibration, temperatures, etc.
• Visible indications include special connectors, rugged cases, covered ports, etc.
• NSNs are very useful markings for identifying military equipment
 - 13-digit numerical code
 • NNNN-NN-NNN-NNNN
 • Digits 5 and 6 indicate a country of origin code
 - Identifies all the 'standardized material items of supply' as they have been recognized by all NATO countries
Example – NATO Stock Number

TRUCK, UTILITY: 1/4 TON, 4x4, M151A2

NAT. STOCK NO. 2320-00-177-9258

MFD. BY

CONTRACT NO.

VEH IDENT NO.

MANUALS

LUBRICATION LO 9-2320-218-12
MAINTENANCE TM 9-2320-218-20
OPERATORS TM 9-2320-218-10
PARTS LIST TM 9-2320-218-20P

DATE OF
DELIVERY INSPECTION

U.S. PROPERTY

OPERATING INSTRUCTIONS
TRANSFER CASE

IN

FRONT
DRIVE

OUT

DISENGAGE FRONT AXLE DRIVE WHEN OPERATING ON HARD SURFACE. SHALLOW FORGING DEPTH 21 INCHES
Example – NATO Stock Number

REF No 6230-99-942-7885